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Abstract

This report presents the methodology used for Implementing Silhouette method
for Robot motion planning in Configuration spaces in arbitrary dimensions. A col-
lection of ellipsoids are used to design and implement this Configuration Space
of the robot. The path is then designed based on the Silhouette method as de-
scribed by Canny [2], which creates semi-free paths in the configuration space and
is complete. Djikstra’s algorithm is used to connect the paths obtained. This report
introduces each of the key areas of the project and follows a step by step implemen-
tation of each. To conclude, we discuss the model output by our implementation
and future directions of this project.

1 Introduction

1.1 Motion Planning

Robot Motion Planning comprises the problem of finding a valid path for a robot from
its start configuration to its goal configuration. A robot conf iguration ¢ is a specifi-
cation which determines the positions of all robot points relative to a fixed coordinate
system and the configuration space is the space of all possible configurations. A valid
configuration is one in which the robot does not “touch” or intersect any obstacle.
A valid path implies that at each instant of execution of the path, each configuration
should be valid in the configuration space.

Let W C R™, where m is dimension of the configuration space be the work-space of the
robot, O € W the set of obstacles and A(g) the robot in configuration g € C.

Cfreez{qec | A(Q)nO:¢}
GQvalid € Cfree
Cops = C/Cfree

Silhouette method is classified as a roadmap Method. A roadmap is a union of
curves in the configuration space C.. A roadmap is said to be accessible if there ex-
ists a path from g to g, where ¢’ € C,... A roadmap is said to be departable if there



exists a path from ¢”’ to genq, Where ¢’ € Cjye.. Finally, a roadmap is said to be con-
nectable if there exists a path from ¢’ to ¢”’. Silhouette method is a complete method,
that is, the method extracts a path from a start configuration to the goal configuration if
any exists in the selected roadmap, or outputs failure if no such path exists.

2 Silhouette Method

Let S be a compact subset of R™, (S € R™). A set S of real numbers is compact if
every sequence in S has a subsequence that converges to an element again contained in
S.

In Silhouette method, a hyperplane of dimension (m — 1) is swept across subset S,
perpendicular to a reference axis, say the x;-axis. The hyperplane is swept through at
regular intervals of x;. At a position, x| = c, it is denoted by P,.

Intersection of S and P

Figure 1: Depiction of P., a 2D plane, cutting subset S

At each hyperplane, the extremal points of intersection between the slice and the
compact space and the obstacles are calculated along one arbitrary direction, for ex-
ample, the x,-axis. As input to our system, we require from the user a function which
takes as input any possible configuration of the robot and outputs whether it is a valid
configuration or not. It should also output the distance that the point is from the bound-
ary along the chosen direction (the x,-axis in this case). Using these functions we find
the extremal points and since S is compact, these points exist in every direction.

Silhouette curves

Extremal poiats in y in the slice Sn P,

Figure 2: Silhouette Curves traced out by connecting the extremal points



As c varies, the extremal points in the chosen direction are connected to the ex-
tremal points of the previous slice and the method traces piece-wise silhouette curves.

2.1 Ciritical Slices

As long as the number of extremal points in the graph remain consistent, the slicing
process continues. However, where the number of extremal points in the slice increases
or decreases, the connectivity of the graph changes. In case of an increase in the ex-
tremal points the new points are called critical points. In case of a decrease of extremal
points, the point where the silhoutte curves meet are called critical points. Slices which
pass through these critical points are known as critical slices, and the values c, such
that x; = c¢ describes the critical slice, are known as the critical values.

Critieal point

Rosdmap of slice through eritical point.

Figure 3: A critical point occurs when a new extremal appears

At each of these critical slices, a recursive step is initiated. This procedure treats the
intersection of the critical slice and the compact space S as the new compact space, S’,
and then applies the same method of slicing on S’, along a reference axis on the slice.
Thus, for an m dimensional space and (i — 1) dimensional hyper-space, on recursion a
subspace of (m — 1) dimensions is described which is the intersection of the subspace
S and the slice P., (S N P.). The method then sweeps across this subspace using a
m — 2 hyper-space along a third direction, say the x3-axis and checks for connectivity

and critical points.
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Figure 4: Recursive call at the lowest level

This recursion carries on till either all the critical points in the subspace are con-
nected, or the recursion reaches the lowest level, a 2-dimensional space. At this lowest
level, the space is swept across by a line segment and the critical point is simply con-
nected to the closest silhouette curve using a straight line segment.



2.2 Accessibility and Departibility

The term accessibility means that there should be a path from the start configuration
qstars» Of the robot to a valid configuration ¢’, which lies on the silhouette curves.Departibility
means that there should be a path from some valid configuration, ¢”’ of the robot which

lies on the silhouette curves, to a goal configuration, g

-
™

Figure 5: Silhouette path for a 2D space

X

For providing accessibility and departibility to the system, we make the slices con-
taining the start and the goal configurations part of the set of critical slices, with these
two configurations as critical points.

3 Experiments and Calculations

3.1 Test Region

For designing and testing our implementation of the Silhouette method, we have de-
signed and created N-dimensional workspaces described using ellipsoids. Here we
discuss the mathematical modeling of these configuration spaces.
The region enclosed by an ellipsoid 7, in m dimensions can be described by the
equation
X-X"«AxX-X)<1

Here X € R”, X describes the center of the ellipsoid and A is a positive definite matrix.

In order to create a complex configuration space, we use multiple ellipsoids to de-

scribe the space. The first ellipsoid provided as input is used as the primary ellipsoid
(PE), that is, the robot configuration is valid only if it is inside or on the primary ellip-
soid.
The remaining ellipsoids provided in the input are then used as secondary ellipsoids,
(SE) and no configuration that lies inside them is valid. For a secondary ellipsoid,
E.E € SE, if it lies completely outside the primary ellipsoid, then it is ignored. If it
intersects PE, then it forms a part of the boundary of the compact subspace and if it is
completely inside PE, then it is part of the obstacles, E C O.

For the user to be able to view and understand the space and the path described
by the robot, we have developed the method to reduce the positive definite matrix A
for each of the input matrices to view them in 2D and 3D. In each of the images,



primary ellipsoids (PE) are represented by a blue mesh, and secondary ellipsoids (SE)
are represented by a red mesh.

Figure 7: 3D projection onto three of (x,y,z,w) of the same 4D configuration space

The matrix A of each ellipsoid is reduced to obtain the projection of the ellipsoids
by first identifying vectors normal to which the hyper-plane will be described. Using
Gram Schmidt Orthogonalization we generate a basis that will describe the complete
plane from which the ellipsoids will be projected.

Let the basis of the plane of dimension n be V and the m vectors normal to the
planes be V., or pi ... p, and the n — m vectors tangential be Vg, OF psi - .. Ppom,
then

V= [Vormn Vtang]

A general equation of a point x in the plane described by vectors p; ... p, to be pro-
jected is x = Yo" a@ipi + D= Bipi and on any ellipsoid it is (using P in place of
Vurlh),

[Vorm * x = )?]TA[Vorth xx— X =1

[x—PT£]"(PTAP)[x-PT5] =1
The Matrix (PT AP) is the required projection matrix onto the plane to be described.
Images used in this report have been created using matplotlib, which a python library

for 2D and 3D plotting, in order to depict the projection of the workspaces and path
generated .



3.2 Implementation Steps

Our system takes as input the number of dimensions, n to be worked on, followed by
the number of ellipsoids to be used to create the test region and details of each of these
ellipsoid. The first module to run is ProcessInput module which parses the input to
generate the positive definite matrix and origin vector for each ellipsoid. The required
input format mandates that the primary ellipsoid’s (PE) center coincides with the center
of the fixed coordinate system and each of it’s axes is parallel to one of the axes of the
fixed coordinate system.

The next module to run is the RoadMapGeneration module to start the creation of
the roadmap (silhouette curves). First the primary axis is chosen arbitrarily as one of
the axes of the primary ellipsoid, say the x| axis. The range of traversal is subsequently
chosen as the end points of the primary ellipsoid along the chosen axis, that is where
PE intersects the x; axis.

This module utilizes the PlaneEllipselntersect module. For each of the obstacle
ellipsoids, it calculates it’s pair of Critical points, the points a along the traversal axis,
where x; = a is a tangent plane to the obstacle ellipsoid using the following equation :

Ale. (D)

X=c=x
a—Cy

Where A is the positive-definite matix of A in R"XR", c is the center of the ellipsoid,
c1 is the center along the traversal axis and x is the point of intersection, here the critical
point. This equation can derived in the following steps :

The equation of the ellipsoid is {E(x) = (x—c)'A(x—c¢) = 1} and hyperplane is {x; = a}
The gradient of E is the vector field

VE(x) = 2A(x - ¢).

The gradient is parallel to the first coordinate direction if and only if there is a real
number A such that
2A(x — ¢) = dey. 2)

If the ellipsoid is tangent to the hyperplane {x; = a} then the first coordinate of x is
a. Such a x is necessarily unique since the ellipsoid is strictly convex.

(x—0c)e; =a—c (3)
Substituting (2) into equation of the ellipsoid and comparing with (3) gives us
fAa=-c)=1. @

Comparing (4) with (2) leads the conclusion, (1):

1 -1
x—c==-AA""e = A ey,

2 a-—cy

Following the calculation of all the Critical points, the traversal of the ellipsoid
begins. In the highest recursion level the traversal begins from minimum of the two end



points of the primary ellipsoid along the traversal axis. At regular intervals along the
traversal axis, we obtain the slice and apply the PlaneEllipseBoundary module. This
modules checks if an obstacle intersects with the plane and calculates the boundary
points along the chosen arbitrary axis lying on the plane.

For example, at the highest recursion level with x; as the traversal axis, x; = a
will be the slice, c is the center of the ellipsoid and A is it’s positive definite matrix
and along one of the x; axis of the dimensional plane, such that i # 1, say the x; axis,
the Intersect module will solve the equation for the vector of dimension equal to the
dimensions of the plane, X = [a, x,,0...0]:

X-oT«AxX-¢)=1

At each interval, which is at a regular distance, the LinkToRoadmap module con-
nects the intersection points obtained from the above module to the points and curves
obtained from the previous slice. As the traversal proceeds we check if there are any
critical points between the present slice and the next. In case there are none, we pro-
ceed in this manner till the end point.

If there are Critical Points between the two slices, it implies that there is at least
one Critical Slice between the two slices. The system then works on each Critical
Slice recursively along with run the PlaneEllipseBoundary and LinkToRoadmap. The
system constructs the intersection of the present configuration space C and the slice,
S : x; = a, to obtain workspace formed by the intersection W, W = WNS. We utilize
the ReduceEllipsoids module to obtain the intersection of each of the ellipsoids and the
slice, that is, it returns the origin and the positive definite matrix of the ellipsoid in the
intersection space. Taking A € R" x R", it returns the B € "' x R"~!.

An ellipsoid needs to be reduced when the plane intersects it at more than one
point, that is, it is not the critical slice for that ellipsoid. By definition, the primary
ellipsoid always needs to be reduced, unless the critical points intersect with its start or
end point. The reduction of the ellipsoid proceeds as follows,

x-o)T*Ax(x—c)=1

AT
o-eva=el 3 |- 2
Where x is a point in the configuration space of n dimensions, c is the center of the
ellipsoid, A is it’s semi-definite matrix, g is a point in the lower dimension (n — 1), ¢; is
the center of the ellipsoid along the x| axis, ¢ is the list of center points excluding the
center at the x; axis, equation of the plane is x; = a, aj; is the corner most point of A
and dj is the list of values in the first row of A, excluding the first point. (5) leads to
the following.

q"Aq-20TAg+2a-c))diTg=1-ap(a-c))? -eTAe+2a—-cpale  (6)

Now, we wanted an the resulting ellipsoid formed by the Intersection, for which the
equation was:
(g-d)" *Bx(g-d)=1



g"Bq—2d"Bg=1-d"Bd (7

Now, the equations (6) and (7) are for the same ellipsoid and by matching terms we
obtain the following, which we solve to get B:

1-d"Bd R
B= A (1)

1-ay(a—c))?-¢cTAé+2(a—-cpale

1-d"Bd

1—a(a—c))?-eTAe +2(a—cpale

B'd= AT¢ - (a-cpay) )

The second module it uses is to calculate the center of the ellipsoid in the new
intersection plane. The line parallel to which the boundary of an obstacle ellipsoid is
traced also connects its pair of critical points. When a slice x; = a intersects with the
ellipsoid, its center in the intersection plane lies on this line. When xlf " and x;.‘“””d are
the value of the i axis for the first and the second critical points:

irst
a— }C{ % (x_'vecgnd _ x{'irst)

‘irst
center _ xlf + - — :
xiewn _ x{

1

In the recursive stage the silhouette method proceeds in which the intersection of
the primary ellipsoid and the plane forms the primary ellipsoid for recursion and simi-
larly for the obstacles. The traversal axis chosen is the next axis of the primary ellipse
and the other steps described above follow. The base case of this recursion is when the
space being traversed is 2 dimensional. At this level, the critical points found in the
traversal of the 2D space and the ones passed down from higher spaces are connected
by straight lines to the closest points on the previous slice. This helps ensure that the
path does not cut across an obstacle.

Finally the connections returned from the recursion are linked together with the
silhouette curves at the calling level to form the roadmap (graph). We run Djikstra’s
algorithm on the adjacency list obtained from this graph to describe a path between the
start and the end configurations.



Figure 8: Output path for a 3D configuration space formed along one standard axis

4 Result

We tested our system using test configurations in two, three and four dimensions. We
will start with the 2D test cases with one and two obstacles. The roadmap generated in

shown in figure [8].
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Figure 10: Roadmap gen-
erated for one obstacle along
all axes

Figure 9: Roadmap gener-

ated for one obstacle Figure 11: Roadmap gener-

ated for two obstacles

Testing on 3 Dimensions, we present the Roadmap generated for one obstacle fol-
lowed by the roadmap for multiple obstacles. The roadmap created by the method
fulfills the rules required for accessibility and departibility as shown [16].



Figure 12: Three obstacles - 3D Figure 13: Three obstacles - 3D
view view

Figure 14: Three obstacles - Figure 15: Three obstacles -
view along the X&Y axis view along the Y&Z axis

Figure 16: Output path for a 3D configuration space when provided start/end point

The figure [17] is the 2D projections of a roadmap formed for a 3D space. The first
two images show the roadmap (green) closely following the boundary of the primary
ellipse (blue) and the secondary ellipse. Taking the 3D space to be described by the
X, y and z axis, the first two images are projections along the y and z axes. The third
image which is a projection along the x-axis is more interesting. The green path does
not seem to be along the boundaries of the respective ellipses which is because of the
formation of the path in the recursive layer. The path does indeed follow the outer
boundary but it does so at different intervals and the path formed at those intervals is
the projection shown.
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Figure 18: 3D projection of path onto three of (x,y,z,w) of the same 4D configuration space

The output of the model when applied on a 4-dimensional input space is shown in
figure [20]. Each image shown is the projection of the model along the three chosen
axes of the space. These axes can be chosen in 4 different ways and the projection of
the space along with the path is shown along each. This final output underscores the
result of this project to be able to find a path any arbitrary dimensional space if it exists.
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Figure 19: 3D projection of path onto three of (x,y,z,w) of the same 4D configuration space -
multiple obstacles

The final path obtained using the Dikstra’s algorithm applied on the roadmap from
the start configuration of the arena to the goal configuration specified close to the only
obstacle present in the arena is shown.
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Figure 20: 3D configuration space with intersecting obstacles
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Figure 21: Path from Start to Figure 22: Path from Start to
Goal configuration Goal configuration - Top View

5 Conclusion

In this report we have presented a method used for the implementation of the Silhouette
method for Robot Motion Planning. The Silhouette method is a roadmap method for
robot motion planning which is complete, which means it will find a valid path if any
exists. The report initially discusses the concept of the Silhouette method followed
by our implementation. The step by step mechanism followed was reviewed. The
configuration space we have generated to test the Silhouette method is using ellipsoids
described in any arbitrary N dimension. The advantage of using an ellipsoid space is
the capability to quickly and easily model obstacles in the ellipsoidal space. Projection
of these regions has been discussed, which is utilized when the configuration space is
in 3 or greater dimensions. In the result section, the output images for paths obtained
in 2, 3 and finally 4 dimensional configuration space are shown. The 4 dimensional
output demonstrates the applicability of the Silhouette method in arbitrary dimensional
configuration space. Djikstra’s algorithm has been applied to find a path between the
start and goal configuration, on the obtained roadmap.
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