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Abstract

We explore the problem of predicting height maps for man-
made and natural terrain when seen from a single image
captured by a satellite. This is a very challenging, ill-posed
problem, and single-view depth prediction models trained
for indoor and outdoor scenes do not immediately apply to
the satellite domain. This paper explores this problem for
flat and sloped terrain. We propose a baseline model using a
deep network that regresses directly from the input image to a
height map and is trained using a MAE loss designed specif-
ically for our domain. Predicting the height for images with
sloped terrain proves to be a particularly hard challenge.
To solve for slopes, we train a separate network to predict
dense surface normal maps and combine the surface nor-
mals and the predicted height in a global optimization step
to improve results on sloped terrain. However, the standard
optimization strategy using a constant weight for all pixels
in an image introduces a regression on the performance on
flat terrain. We propose a novel weight prediction model
that predicts per-pixel weights as input for the optimization
step. We show that this proposed solution improves height
prediction for sloped terrain without regressing on the flat
terrain and perform evaluations on a range of loss functions,
data sets, fusion strategies and training strategies.

1. Introduction

Timely access to geo-spatially accurate 3D data has be-
come a need for enabling rapid response to events such as
disasters and humanitarian crises. 3D reconstruction us-
ing satellite imaging can provide this data model. Further,
this data can be used for a variety of tasks, including urban
planning, landscape and environmental monitoring [13, 29],
and change detection [23]. When multiple images are avail-
able from overlapping viewpoints, 3D reconstruction can be
achieved using triangulation-based stereo methods [7, 13, 9].
However, in many cases only a single view of a region may
be available. For example, situations where you want up-
to-the-minute 3D or when multiple images are available but
only one is useable, for instance due to cloud cover. Such
cases can be handled by single-view 3D reconstruction mod-
els. Single-view 3D reconstruction also has applications in

Figure 1. Height map prediction for satellite images. The focus
of our work is predicting the height of man-made and ground
objects given a satellite image. First we train a deep network to
predict dense height maps for input satellite images and then, we
use a separate network to predict the surface normal map and fuse
the height and normal maps to improve on sloped terrain. The gray
gradient in the height maps represents the increase in height along
the slope.

historical aerial photography where overlapping stereo pairs
cannot be acquired. Thus, there is a rise in interest in Single-
view 3D reconstruction and it is currently a contest (track
#1) in a U.S. government-sponsored data fusion contest [24].

In this work, we focus on the problem of learning single-
view height map prediction for satellite images [27] using
convolutional neural networks. The goal is to predict the
height of objects relative to a ground plane in the image,
which is different from predicting depth (i.e., the distance
to the object from the satellite camera). Predicting absolute
height of objects on the ground seen in an image is an ill-
posed problem. Beyond the mathematical ill-posedness of
predicting 2D from 3D, height map prediction for satellite
imagery suffers from a translation ambiguity along the axis
of the height. This is because the height of the satellite is
essentially infinitely larger than the height of the objects
on the ground and objects at an arbitrary translation of the
ground plane along the height axis (i.e., an arbitrary choice of
“sea level”) map to the same input image. Accordingly, only
relative height differences between the objects are learnable
and we use a new translation-invariant loss for training the
height regression for this purpose.
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Figure 2. Overview of our approach. We learn to predict dense height maps from the input satellite images using a single-stack hourglass
network. To improve results of height prediction in sloped terrain, we also predict a dense surface normal map and a dense weight map
separate single-stack hourglass networks. These initial height and normal maps are fused together, weighted by the predicted weight map, in
a global optimization step formulated as a sparse linear least squares problem.

Predicting height maps for sloped terrain is particularly
difficult. Slopes occur where the topography varies as in hilly
regions, Figure 1. The height is difficult to predict in part due
to the lack of available perspective cues in near-orthographic
satellite images. During height map regression, the height of
each pixel depends not only on the local surrounding of each
pixel, but also on the global terrain. In contrast, a network
for predicting dense surface normals at each pixel only needs
to leverage the input from a small surrounding region of each
pixel to predict its normal. Visual cues for this task include
the texture of the sloped surface, shading of the terrain, shape
along creases and height discontinuities. Predicted surface
normal maps can then be integrated to obtain the per-pixel
height map of the input image [19, 30].

We show that fusing both predicted normals and heights
in a global optimization post-processing step provides im-
proved performance for height prediction in sloped terrain.
However, we find that the hyper-parameter settings that pro-
vided the best results on the sloped terrain lead to a regres-
sion on images with a flat terrain. In order to overcome this,
we propose a novel weight prediction model that predicts
dense weight maps which are used as input to the optimiza-
tion step. The weight prediction model chooses whether to
use the normal prediction or the height prediction for each
pixel. We show that this strategy improves results on the
sloped terrain without regressing on the flat terrain.

To train and evaluate our methods, we generate a new
benchmark dataset for single-view height prediction. We
explore the use of a highly scalable source of data for this
problem: satellite imagery captured with a small disparity
between the image pairs for which multi-view stereo (MVS)

methods can automatically produce height maps. We gener-
ate data from three different sites and from different months
of the year to increase diversity in the data. We use this data
to define distinct test sets with different characteristics (e.g.,
sloped vs. flat terrain). We will make the data set publicly
available to the community.

In summary, we propose to predict the height map given a
single monocular satellite image. Our contributions include:

• a new translation-invariant loss inspired by the scale-
invariant loss used for terrestrial depth prediction [6]
• a joint surface normal and height map prediction model

that fuses normal and height predictions to yield im-
proved results on sloped terrain
• a novel per-pixel weight prediction model that chooses

which of the predicted normal and predicted height to
use during the fusion.
• and a new dataset for height prediction using satellite

imagery generated using a classical stereo method.

2. Related Work
Single-view depth and normal prediction. A number of
methods have been proposed to tackle single-view depth pre-
diction using supervised learning [6, 14, 17, 4], unsupervised
learning [12] and synthetic datasets [2]. In addition, many
approaches have been proposed for single-view dense sur-
face normal prediction, either independently [28] or jointly
with depth and/or semantic labels [15, 5]. These methods
are generally trained for prediction in indoor and outdoor
scenes, using standard datasets such as the NYU Depth [26],
Make3D [25] and KITTI [10]. Generating ground truth train-



ing data for single-view depth prediction using SfM-MVS
for terrestrial views has also been proposed [16, 21].

Single-view height prediction. Single-view height predic-
tion for satellite imagery [27, 18] has received much less
attention than single-view depth. [18] proposes to tackle
height prediction using a residual network with and with-
out skip connections. [27] proposes a multi-task semantic
segmentation and single-view height map prediction net-
work. The network is directly learned using an L1 loss on
nDSMs [1]. Using nDSM files for ground truth is expensive
because they need accurate DTMs which are expensive to ac-
quire. The nDSM used in [27] are generated using a ground
versus off-ground classifier [11] that introduces error in the
ground truth (F1 score for buildings is 0.909). Additionally,
in [27], they train their networks on 11 tiles and test on 5
tiles. In contrast, we use a translation-invariant loss which
removes the need nDSMs, propose an approach for predict-
ing on sloped terrain and train on a larger data set of 4,077
tiles of height maps generated using stereo methods across
three sites.

Improving depth prediction using normal maps. A num-
ber of approaches have been proposed for learning dense
surface normals and depths jointly, e.g., using a multi-task
network in order to regularize the depth regression task and
intrinsically learn the normal maps [15, 5]. Improving depth
or normal maps as a post-processing step using the other has
been proposed via learning based approaches [22] as well
as global optimization [19]. We use the method described
in the latter, under the section ’Improve positions using nor-
mals’, for optimizing the predicted height values. We are
also inspired by the fusion of depth and normals proposed
by Zhang and Funkhouser [30], although they assume that
some known (but sparse) depths are provided as input. In
our case, we predict the height maps from scratch.

3. Methodology
In this section, first we introduce our height map regres-

sion method and it’s associated loss. We then describe our
surface normal prediction method, followed by the global
optimization step and the per-pixel weight prediction model.

3.1. Height prediction

We are interested in predicting the height of objects on the
ground, as seen from a single satellite image, with respect
to some arbitrary reference height (i.e., a “ground level” or
“sea level”) and this differs from the task of single-view
depth prediction. The latter involves estimating the depth of
the object with respect to the camera, whereas, we assume
that the satellite is at an infinitely far, fixed point and hence
predicting depth relative to the satellite does not apply.

Predicting absolute height maps from satellite imagery
is an ill-posed problem. Beyond the mathematical ill-

posedness of recovering 3D from 2D, there is also an ab-
solute height ambiguity. The distance between the satellite
and the ground is generally orders of magnitude larger than
the height of the typical building or hill. Hence, all terrain
within a wide range of background elevation will look nearly
indistinguishable to the satellite’s camera. We are interested
in learning to predict the height of the buildings relative to
the height of some (arbitrary) reference ground point. Thus,
we introduce the translation-invariant mean absolute error
(MAE) metric, which extends the scale-invariant error [6].

The translation-invariant MAE subtracts the mean of the
difference of the height of the ground truth and the predicted
height when calculating the error of the height prediction
for a pixel, i.e., it calculates the L1 error up to a global
shift in the estimated height. Mathematically, if hi is the
predicted height and h∗i the ground truth height for pixel i,
the translation-invariant MAE, D(h, h∗), is defined as

D(h, h∗) =
1

N

N∑
i

|hi − h∗i + α(h, h∗)| (1)

where

α(h, h∗) =
1

N

N∑
i

(h∗i − hi) (2)

We use the translation-invariant MAE loss for training our
height map prediction network. To encourage smoother
gradient changes and sharper height discontinuities, we in-
troduce a translation-invariant gradient loss Lgrad, defined
as an L1 penalty on differences in height gradients between
the predicted and ground truth heights [5, 16]:

Lheight = D(h, h∗) + Lgrad (3)

Lgrad =
1

N

N∑
i

|∇xhi +∇yhi| (4)

Where ∇xhi and ∇yhi are the horizontal and vertical
image gradients of the difference in height.

3.2. Surface normal prediction

We generate the ground truth surface normal maps using
the ground truth height map. We first filter the height map
using a 25 × 25 box filter to reduce noise in the generated
normal map. Then, for each pixel in the ground truth height
map, we estimate the 2D surface normal by fitting a local
plane to the 8 neighbouring pixels [26].

Angle-based surface normal loss. We define the loss term
Lnormal in terms of the cosine (dis)-similarity between the
predicted and ground-truth normal vectors. Mathematically,
if the predicted normal map is denoted as np

i and the ground
truth surface normal is denoted as nh

i for each pixel i, the



normal loss is defined as:

Lnormal =
1

N

N∑
i

(
1− (nd

i · n
p
i )
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i || · ||n

p
i ||

)
(5)

Predicting normals. Can we train a network to predict sur-
face normals for satellite images? An interesting property of
this domain is that the normal direction for many pixels is
perfectly vertical, because the ground is often flat. Hence, a
learning model can achieve a low loss by simply learning to
predict constant, upwards-facing normal maps, and learning
tends to stagnate almost immediately after the first epoch.
To encourage the model to predict better normals, we ex-
periment with two other strategies. The first is to train the
normal prediction jointly with the height prediction using a
multi-task network, using a common single stack hourglass
network. The second is to predict the normal maps at two
scales, one at the original scale of the input image and the
other at a scale 20 times smaller than the original scale. The
second strategy is used in order to encourage the model to
learn normal maps consistent with global slope in the image.

3.3. Fusing height and surface normals

Using the predicted height hp and predicted surface nor-
mal map np, we solve a system of equations to obtain an
optimized set of height predictions ho [19, 30]. The least-
squares objective function is the weighted sum of squared
errors of the difference between the optimized height and
the predicted height, Eh, and the dot product of the tangents
along the surface of the optimized height and the predicted
normal vectors En:

ho = argmin
h
Eh + λ2NE

n (6)

where
Eh =

∑
i

||hpi − hi||
2 (7)

and

En =
∑
i

(||tx(hi) · np
i ||

2 + ||ty(hi) · np
i ||

2) (8)

Here, tx(hi) and ty(hi) denote the x- and y- surface
tangents along surface of the optimized height values. We
compute tx(hi) and ty(hi) as follows:

tx(h) =

[
1 0

dh

dx

]T
ty(h) =

[
0 1

dh

dy

]T
(9)

This normal error calculation method is an approximation
for using the normalized form of the tangent vector when
calculating the dot product between normal and tangents [19].
We use this approximation because the normalized form

makes the system of equations non-linear and harder to solve.
However, this approximation makes the system prone to
scaling issues when only the normal maps are used. That
is, smaller heights result in shorter tangents and smaller
En terms [30], whereas larger heights lead to tangents with
more weight. We do not encounter the scaling issue when
we incorporate the predicted height in the system, which
maintains the original scale of the predicted height during
the optimization.

The linear system is sparse, and we use scipy’s imple-
mentation of [8] to solve the optimization problem. Through
this joint optimization, we are able to leverage predicted
normal maps, which provide local normal information use-
ful for predicting slopes and the predicted height estimate,
which provides the global context. We refer to the final result
output of the system as optimized height predictions.

3.4. Learning dense weights for fusion

In Equation 10, λN is a dimensionless hyper-parameter
that controls the impact of the different error values on the
optimization objective. As the sloped terrain in the input
images increases, we observe empirically that the optimal
choice for λN increases, Figure 6. We find that choosing a
λN in the range [80, 160] leads to an overall improvement in
the height estimates. However, using a constant λN for the
complete image has its limitations. Using a λN in the range
[40, 160] leads to a regression in the results on the flat data
set, Table 3. Additionally, when an oracle is used to select
the best λN from the range [1, 160] for the optimization
of each data instance, the gain in improvement of height
predictions doubles. This motivated us to predict the λN
values per input image. We predict a λN value per-pixel,
as different regions of the same image may have different
terrains.

We use a single stack hourglass network to predict a per-
pixel weight map given only the satellite image as input. The
weight map, Wn, is used to weight the position error Eh

during the optimization step. Each value in the weight map
wi is associated with the ith pixel in the input image and
is squashed to between 0 and 1 using a sigmoid operator.
We weight the normal error En with the complement of the
predicted weight map, 1−Wn. These pairs of weight maps
are used as input weights for the optimization step. The
optimized height becomes:

ho = argmin
h
Wn ∗ Eh + (1−Wn) ∗ En (10)

Penalty-based weight loss. In the optimization step, we
use two sources of error. The first is the MSE between the
predicted and optimized height, Equation 7 and the second is
the consistency error between the tangents and the normals,
Equation 8. We train the predicted weight model to “choose”
which of these errors it should penalize such that the overall



Figure 3. Data set samples from each site. The top row is the
satellite image and the bottom row is the generated ground truth.

loss decreases. This is equivalent to choosing either the
height prediction or the normal prediction for each pixel.
The weight training loss, Lwt is:

Lwt = wi ∗ ||hpi − h
∗
i ||2 + (1−wi) ∗

∑
r∈x,y

||tr(hpi ) · n
p
i ||

2

(11)
Note, the model is trained using only the satellite image

as input and the predicted height and normals maps are used
only during the loss computation. During the normal-tangent
consistency error computation for the weight model training,
we use the raw normals output by the normal prediction
network before they are normalized to unit magnitude. This
helps the weight prediction network learn better by re-scaling
the consistency error to the same scale as the height error.

4. Dataset
We generate ground truth height maps using the S2P

pipeline [7], which uses a stereo method that won the IARPA
Multi-View Stereo 3D Mapping Challenge 2016. By using
a stereo method to generate ground truth, we can cheaply
collect a large amount of diverse training data from images
taken from sites in different parts of the world, which can
help improve the generalizability of the models.

Input to the S2P pipeline are multiple satellite images of a
target site that are slightly spatially displaced with respect to
each other. The images are captured at a resolution of 0.31m,
using a WorldView-3 sensor and the panchromatic imaging
system. The S2P pipeline divides input images into tiles (we
use 1000× 1000-resolution tiles) and computes a disparity
map and height map for pair of neighboring tiles and merges
the result into a height map output per tile. Two failure cases
for this methods are failure to capture height for bodies of
water and failure to capture moving vehicles. For a measure
of error margin of the ground truth, we direct the readers to
[7].

We generate data from several sites, selecting sets of im-
ages taken on the same date for generating ground truth

Figure 4. Split of the Ohio data set collected on three different
dates. The top row is the partition used for training and the bottom
row is the partition for testing. The test and the train set do not
overlap, even across different dates. An increase in the snow on the
surface can be observed from Sep. to Dec. Data collection from
different dates adds robustness to weather factors such as snow.

height maps. Each input image has dimensions in the order
of 43000× 36800 pixels and spans in the order of 14× 12
kilometers. We collect the data set from three sites, Figure 3.
From a single site, different pairs of images can be gener-
ated from different months/years, and thus generate multiple
instances of image-target pairs for the same geographic area.
This adds robustness to the training as different seasons aids
in learning invariance to factors such as weather or lighting.
We use two different test sets, one from a site with flat terrain,
and another from a site with sloped/hilly terrain and report
the performance of our models on each individually.

Florida. The first site is from Florida. The data is obtained
for the same site during two different months from two
different years, October 2014 and November 2015. The first
data collection generated a total of 1,279 tiles and the second
generated 1,079 tiles, each of size 1000× 1000 pixels. This
data set has a high density of water bodies visible in the
input image. The stereo methods do not perform well on
water bodies and we filter out all images from this data set
with more than 35% invalid pixels (as determined by S2P).
Further, we use 100% of these images for training (and none
for evaluation). After filtering, we obtain a total of 2,076
tiles from this region.

Ohio. The second site is from Ohio. We obtain data for
this site on three different dates in the months of September,
November, and December 2016. The images from December
are covered in snow and add diversity to our dataset. We
use 60% of the data (1,546 tiles) for training, 20% for the
development set and 20% for the test set. This test set has
predominantly flat terrain, and we denote this as the flat test
set when reporting performance. The average, maximum
and minimum standard deviation in height per image for this
test set are 6.25m, 14.79m, 0.23m respectively.

Images from the same site from different dates may not
overlap 100% with each other. We use the following strategy
to avoid leaking any test data from one date into the training
data from another date. The images we obtain are roughly
aligned in the x− y axis, where the y−axis corresponds to
the latitude and the x-axis corresponds to the longitude. We



choose the smallest of the provided input images and parti-
tion the image along the latitude such that 60% is assigned
to the training set, 20% to the development set and 20%
for the test set. The latitude used to split this image is then
used to split all the other images from the different dates.
As the center of the site is consistent across dates, this split
ensures that no train and test overlap occurs Fig. 4. Most
images across different dates and sites align with each other.
However, a few pairs have a minor rotation between pairs of
images, which could cause overlap of about 500 pixels near
the edges. Thus, we discard about 2000 pixels between the
train and val split along the latitude.
San Diego. The third site is from San Diego, California. We
obtain data for this site on a single date. Similar to Ohio,
we use 60% of this data (456 tiles) for training, 20% for
the development set and 20% for the test set. This test set
has predominantly sloped terrain. The average, maximum
and minimum standard deviation in height per image for this
test set are 9.02m, 21.27m and 0.93m respectively. Hence,
we denote this set as the sloped test set when reporting
performance.

5. Training details and metrics
For the height, normal and weight prediction networks,

we use the hourglass architecture proposed in [20]. Our mod-
els contain a single hourglass stack. We use the translation-
invariant MAE loss for training the height regression net-
work, the 1-minus-cosine loss for the normal regression net-
work and the penalty-based weight loss for the weight predic-
tion network. The height and normal models are trained with
a batch size of 4 on two Nvidia TITAN X GPUs, two batches
per GPU, using Adam to optimize the weights and an initial
learning rate of 0.01 for 30 epochs. Then, the models are
fine-tuned on the San Diego training set for 10 epochs at an
initial learning rate of 0.001. The networks outputs height
and normal maps at 0.32fps for images of size 1000× 1000
on a single TITAN X GPU. For the optimization step, we
use λN = 140. This hyper-parameter is selected using the
development set and the final results are reported on the test
sets. The optimization step takes a variable amount - the
time to optimize a 1000 × 1000 image varies from a few
seconds for λN = 1, to a few minutes for λN =∞. Using
λN =∞ is equivalent to integrating the normal maps.

For multi-task architectures we use the single stack hour-
glass as the backbone, where each branch has two 1 × 1
convolution layers. The first is followed by a BatchNorm
and a ReLU layer and the second maps the filters to the
output dimension. For multi-scale normal prediction, the
prediction at the smaller scale is also a separate branch in
the network, with an adaptive average pooling between the
first and the second convolution layers in the branch.

The weight prediction network is trained only on the de-
velopment set, as the height and normal predictions on the

Figure 5. Qualitative results for height, surface normal and
weights. The optimized height maps are generated by using the
dense weight map as input to the optimization step and are overlaid
with the nan mask from the ground truth for easy comparison.

training set do not represent the performance on an unseen
image. The weight network is setup by attaching a branch of
three bottleneck layers to an hourglass stack. The hourglass
stack is initialized using the weights of the height prediction
network. We train the weight model for 15 epochs at an ini-
tial learning rate of 1e-4 and 10 epochs at an initial learning
rate of 1e-5 using the Adam optimizer.

Data augmentation. In the domain of aerial imagery, unlike
depth prediction in indoor settings, images can be rotated
about the Z-axis by up to 360◦and still belong to the input
domain. During training, we augment the training data with
rotation and flips. Per image, the rotation angle is chosen
from one of 0◦, 90◦, 180◦or 270◦or it can be flipped about
the horizontal or vertical axis.

Evaluation metrics. We report the performance
of the height model up to a global shift (Sec-
tion 3.1) using several error measures from prior work:
MAE 1

N

∑N
i |h∗i − hsi |

RMSE
√

1
N

∑N
i (hsi − h∗i )2

Threshold (1,2,3) % of hi s.t. max( hs
i

hi∗ ,
hi∗
hs
i
) < thr

thr ε {1.25, 1.252, 1.253} resp.

Completeness fraction of hi s.t. ‖h∗i − hsi‖ < 1.0

Mean Abs Rel Err 1
N

∑N
i |h∗i − hsi |/h∗i

where hsi = (hi +
1
N

∑
j(h
∗
j − hj), is the shifted predicted

height for pixel i. Completeness is the fraction of predicted
points whose error is less than 1 meter [3] and is used by
the S2P pipeline. We report the cosine distance between the
predicted and ground truth normals and the mean angular
error for comparing the normal prediction models.



Model Loss/architecture MAE RMSE Thresh-1 Thresh-2 Thresh-3 Completeness Abs Rel

Overall Flat Sloped Flat Sloped Flat Flat Flat Flat Sloped Flat

Direct MAE loss 85.542 66.94 96.144 27.54 31.72 0.8631 0.9660 0.9849 0.061 0.032 0.103

Scale-invariant loss [6] 5.09 3.42 6.76 4.69 8.35 0.9988 0.9997 0.9999 0.263 0.142 0.018

Translation-inv MSE + Multi-task 4.72 2.89 6.56 4.03 8.10 0.9993 0.9999 0.9999 0.312 0.147 0.013

Translation-inv MAE 4.42 2.63 6.22 3.66 7.65 0.9993 0.9999 0.9999 0.372 0.158 0.012

Translation-inv MAE + Multi-task 4.29 2.60 5.99 3.67 7.42 0.9993 0.9999 0.9999 0.372 0.161 0.012

Table 1. Performance of height regression models. The performance is reported on the two test sets together and then individually. All
metrics are reported up to a global shift in the predicted height. Translation-invariant MAE loss performs better than other loss functions.
Multi-task indicates that a normal prediction branch was also trained.

Model Cosine distance Angular error (◦)

Flat Sloped Flat Sloped

Single scale 0.0049 0.0061 3.71 4.31

Joint training with height 0.0055 0.0068 3.86 4.71

Joint training+multiple scales 0.0055 0.0067 3.90 4.81

Multiple scales 0.0043 0.0056 3.35 4.09

Table 2. Performance of dense surface normal prediction mod-
els. Multi-scale training predicts normals at two scales and im-
proves results on both test sets over the single-scale model.

6. Results

We now compare the performance of our methods, first
individually for each of the height and normal prediction
networks and then the performance of the fused prediction.

Height prediction. For the height prediction task we report
the performance of the network trained with our translation-
invariant loss and compare it against networks trained with
existing loss functions in Table 1. Each experiment uses the
same backbone of a single-stack hourglass network. The
results are reported on the two test datasets together and sep-
arately for finer-grained analysis. The translation-invariant
MAE and RMSE improve significantly when the network
is trained with our proposed loss. Qualitative results for
height prediction using the proposed translation-invariant
loss are shown in Figure 5. Multi-task networks that learn
to predict the height and normal maps jointly lead to better
height estimation models.

Surface normal prediction. The results of our surface nor-
mal prediction evaluation are shown in Table 2. The model
trained to predict normals at two scales outperforms single-
scale training and multi-task training on both the test sets.
This indicates that using two scales is beneficial beyond
learning the global slope of the image. From results in
Table 1, it can be seen that multi-task learning improves
height prediction but hurts the performance of surface nor-
mal prediction. This suggests that the height estimation loss
out-weighs the normal loss during training. We use normals

Dataset λN = 0 λN = 10 λN = 40 λN = 80 λN = 140 λN = inf

Flat 2.48 2.49 2.53 2.58 2.68 3.74

Sloped 5.86 5.83 5.71 5.55 5.33 4.81
Overall 4.17 4.16 4.12 4.07 4.01 4.28

Table 3. Height error on the development set MAE loss for a
range of λN values used for global optimization.

Method MAE RMSE Completeness

Overall Flat Sloped Flat Sloped Flat Sloped

Height regression 4.29 2.60 5.99 3.67 7.42 0.372 0.161

Integrating normals 4.31 3.70 4.92 4.84 6.16 0.225 0.172

Optimization (λN = 140) 4.07 2.79 5.35 3.76 6.67 0.327 0.177
Optimization - dense weights 4.20 2.60 5.81 3.63 7.12 0.371 0.173

Table 4. Performance of height estimation after global opti-
mization. The gain on the sloped test set is significant which
leads to an overall improvement of the height predictions.

predicted using the multi-scale setting as input for the global
optimization.
Fusing height and normals. Table 4 reports the metrics on
output heights after global optimization of predicted heights
and predicted surface normals (as described in Section 3.3).
The errors are reported at the default λN value of 140. The
accuracy gain for the sloped terrain is significant. This leads
to decreased overall error, although the optimization step
increases error for the flat test set. Setting λN = ∞ is
equivalent to integrating the surface normals (and ignoring
input heights), and does not perform well because the output
tends to predict extraneous details and slopes for flat terrain.
Qualitative examples of predicted height, surface normal
maps, and optimized height maps are shown in Figure 6.
Learning dense weights for fusion. The results of the
weight prediction model are shown in Table 5. The per-
formance is reported on the height error and the consistency
error of the normals and the tangents when using the learned
weight maps, section 3.4. The initial error is computed
with equal weights for both errors. Table 4 reports the per-
formance of the global optimization using dense weights
predicted using the weight network. The model using the
dense weight maps improves results on the sloped data set



Figure 6. Global optimization results with different λN values. For each row, the best performing λN is outlined in red. We use a fixed
λN = 140 for the optimization. The valid pixel mask of the ground-truth is overlaid on results for better comparison with the ground truth.

Data set Initial Consistency Error Initial MSE Weighted Consistency Error Weighed MSE
Flat 10.87 10.34 2.71 3.17
Sloped 5.78 41.67 3.33 5.04

Table 5. Results of weight prediction model. The weighted height
error and the consistency error described in 3.4. The initial errors
are computed with equal weights for both errors.

without regressing on the flat data set, even improving on
the RMSE metric for the flat terrain and thus, validating this
approach.

Figure 7. Failure modes. The two whitest buildings in the ground-
truth in the top row are skyscrapers. The model is unable to predict
that their height is much higher than surrounding buildings. The
model also fails to estimate correct height for large roofs with a
surface resembling the ground on top of the building (top-right of
the image in the bottom row).

Failure modes of height prediction. Two failure modes

are shown in Figure 7. The first shows the model is unable
to predict that the skyscraper is taller than its surrounding
buildings. We attribute this to paucity of visual cues for
predicting relative heights between buildings at nadir. Cues
such as cast shadows and thinner haze over a tall building can
be exploited to address this. The second failure case occurs
when the surface on the top of a building resembles the
ground, e.g., a dark surface or a garden. The height for such
pixels is estimated to be at ground level. The optimization
result mitigates this failure to a certain extent.

7. Conclusion
In this work, we propose a deep learning framework for

estimating the height of objects seen from a gray-scale satel-
lite image. This work has the following contributions. First,
we propose to learn the direct height using a new translation-
invariant loss and show that this loss performs better than
existing loss functions. Second, we propose predicting the
surface normals using the input image and optimizing the
predicted height estimates using the normals. We show that
optimization improves results for sloped terrain. Third, we
propose a novel weight prediction model that predicts per-
pixel weights as input for the optimization step and show that
this solution improves height prediction for sloped terrain
without regressing on the flat terrain. Finally, we provide
a new benchmark dataset generated using existing stereo
methods for single-view height estimation.
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